文章主题:

666AI工具大全,助力做AI时代先行者!

如今,数字化转型已成为企业生存的基石。从自动化工厂到人工智能(AI)质量控制,数字化转型的主要目标是通过技术打造竞争优势,从而增强客户体验并降低运营成本。

制造业利用大数据分析、AI和机器人等技术,走在了数字化转型的前沿。据麦肯锡的相关调查显示,数字化转型为制造企业带来了很多好处,包括机器停机时间可减少30%至50%,与质量相关的成本可降低10%至20%等等。

在本文中,我们将探讨五个行业如何在制造业中使用AI,以及制造业领导者需要了解的行业未来发展方向。

汽车工业

汽车制造需要精确度和准确性,而AI可以帮助提高这一点。例如,福特公司采用协作式机器人进行焊接、涂胶和质量控制任务。它使用六台协作式机器人在35秒内打磨汽车的整个车身表面。同样,宝马公司的斯帕坦堡工厂生产了美国宝马汽车的60%,它使用AI管理的机器人,每年节省100万美元,并重新分配工人。

预计到2027年,汽车AI市场规模将达到70亿美元,使其成为在制造业中采用AI的领先行业之一。

电子行业

由于其复杂的组件,电子制造也需要高精度,而AI技术在最大限度地减少生产错误、改进产品设计和加快上市时间方面至关重要。

例如,三星的韩国工厂使用自动引导车(AGV)、机器人和机械臂来完成Galaxy S23和Z Flip 5等手机的组装、材料运输和质量检查等任务。这些工具可以帮助公司保持高质量标准,包括对30,000到50,000个组件的检查。

英伟达正在使用AI来优化硅基板上复杂晶体管配置的布局,这不仅节省了时间,而且可以更好地控制价格和速度。它在短短三个小时内优化了具有270万个单元和320个宏的设计,证明了其效率。面对广阔的市场和持续的AI创新,加强AI的应用正成为电子制造企业的当务之急。

航空航天和国防工业

由AI驱动的制造通过生产精密组件、提高性能和系统安全性,增强了产品的安全性和可靠性。2022年航空业AI市场价值达6.864亿美元,预计将以超过20%的复合年增长率增长。

空客公司利用Neural Concept的技术,使用机器学习将飞机空气动力学预测时间从1小时缩短到30毫秒。与传统的计算机辅助工程方法相比,这种生产率的提升可使设计团队在相同的时间内多探索10,000种变化。

同样,劳斯莱斯公司与IFS合作,通过Blue Data Thread战略将AI应用于航空制造领域。这种方法利用数字双胞胎和AI进行预测性维护,使首次拆卸发动机前的时间延长了48%。

食品和饮料行业

食品和饮料生产需要严格的质量保证,特别是在快速消费品(FMCG)行业,因为它具有“高速”的特性。设备故障和有缺陷的产品可能会阻碍这一目标的实现;然而,集成人工智能可以提高效率、成本效益以及产品质量和安全。

专门从事预测性维护技术的初创公司特别受欢迎。以Augury公司为例。他们通过预测性维护系统帮助百事公司旗下的Frito-Lay公司每年提高4000小时的生产能力,减少了Frito-Lay公司四家工厂的计划外停机时间和成本。

医药行业

开发一种药物通常需要十年时间,再加上两年的时间才能进入市场。不幸的是,90%的药物在临床试验阶段失败,导致时间重新归零。AI可以加速药物开发并加强质量控制。

例如,辉瑞公司使用IBM的超级计算和AI,在4个月内设计了Covid-19药物Paxlovid,将时间缩短了80%至90%。

以下是AI可以缓解药物研发挑战的三个领域:

1. 蛋白质结构预测:像AlphaFold2这样的AI系统已经改变了蛋白质结构预测,使研究人员能够准确理解复杂分子的蓝图,并可能节省多年的实验室工作。

2. 功能预测:AI模型可以预测大分子的功能,并了解蛋白质如何与其靶标结合以及抗体的运动,从而促进治疗反应的发展。

3. 新疗法设计:AI算法利用大量数据来设计蛋白质、抗体和mRNA结构,用于治疗癌症等疾病。例如,Genesis Therapeutics公司利用AI设计和预测新药的有效性、特异性和潜在副作用。

AI在药物开发中的应用可产生50种新药,在十年内带来500亿美元的销售额。超过80家公司正在推进AI驱动的药物开发,吸引了制药巨头的投资。

5个步骤助你AI项目顺利部署

制造业中的AI依赖于三大支柱:问题、人员和流程。以下5个步骤有助于确保您的AI部署顺利实施:

1. 确定问题:识别导致成本增加的不准确之处。刚接触AI的公司应该将问题分解为SMART目标,并评估AI在长期成本节约方面的潜力。

2. 处理资源和数据:组建一支由技术和业务专家组成的多元化团队。评估内部能力并考虑外包或招聘。验证数据是否足够,清理和结构化数据,并确定存储解决方案。

3. 评估数据质量:数据是否是现代的、可访问且充分的?根据需要进行修改。

4. AI模型注意事项:决定构建、购买现成或采用混合方法。

5. 微调和部署:讨论模型的细化、部署和可扩展性。

最后,请务必在每个步骤中遵守道德准则和框架,因为严格检查偏见并制定防范措施至关重要。

Augury最近对500家公司进行的一项调查显示,63%的公司计划增加制造业的AI支出。这与AI在制造业中的市场预测相吻合,根据MarketsandMarkets的预测,到2028年,AI在制造业中的市场规模将达到208亿美元。

AI集成所带来的效率提升可转化为成本和时间的节约,从而将资源转向更关键的任务和机遇。

–THE END–

素材来源:工业AI返回搜狐,查看更多

🌟作为一位资深文章撰写者,我将全力以赴为您重塑每一篇文章的灵魂。👀删繁就简,摒弃冗余信息,保留核心观点,让每段文字都熠熠生辉。📝SEO优化策略融入其中,关键词巧妙嵌入,提升内容在搜索引擎中的可见度。💼专注于内容创作,不涉及作者或联系方式,确保隐私安全。💌高质量输出,满足您的各种需求,期待与您共享知识的盛宴!🌟

AI GPT

AI时代,掌握AI大模型第一手资讯!AI时代不落人后!

免费ChatGPT问答,办公、写作、生活好得力助手!

扫码右边公众号,驾驭AI生产力!

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注